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Abstract Modeling social interaction can be
based on graphs. However most models lack the flex-
ibility of including larger changes over time. The
Barabási-Albert-model is a generative model which
already offers mechanisms for adding nodes. We will
extent this by presenting four methods for merging
and five for dividing graphs based on the Barabási-
Albert-model. Our algorithms were motivated by
different real world scenarios and focus on preserv-
ing graph properties derived from these scenarios.
With little alterations in the parameter estimation
those algorithms can be used for other graph models
as well. All algorithms were tested in multiple exper-
iments using graphs based on the Barabási-Albert-
model, an extended version of the Barabási-Albert-
model by Holme and Kim, the Watts-Strogatz-model
and the Erdős-Rényi-model. Furthermore we con-
cluded that our algorithms are able to preserve dif-
ferent properties of graphs independently from the
used model. To support the choice of algorithm, we
created a guideline which highlights advantages and
disadvantages of discussed methods and their possi-
ble use-cases.

1 Introduction

How can social interaction be modeled? This ques-
tion is discussed in many fields such as psychology,
sociology, and computer science. From an algorith-
mic point of view, graph-like structures influence
our everyday life. Worldwide, people are interacting
trough daily direct or technology-based communica-
tion. Investigating these structures uncovered pat-
terns in the way people are connected to each other.
A famous example is the phenomenon "six degrees
of separation" which was first suggested by Frigyes
Karinthy in 1929 and later popularized in a play writ-
ten by John Guare in 1990’s. This phenomenon de-
scribes a global property of small-world networks
such as the network people form through commu-
nication. It is suggested that every pair of humans
is connected through a maximal chain of 6 steps. A
proof for real networks of full-size scale could not be
done, yet. Such a global property of a network could
be used to predict the spreading of information or
diseases.

However, while time is going on these structures
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are constantly changing. For instance some real-
world communication examples, which are undergo-
ing constant changes could be students making new
friends, a group of classmates which is falling apart
after graduation or two companies which are increas-
ingly working together. Although these changes can
be crucial for the lives of affected people, global
properties should be largely unaffected.

These examples lead us to think about observed
local changes. We can guess that some structures
will still exist in the resulting networks. For ex-
ample the group of classmates could lose track of
each other and new groups will be forming. Extro-
verts will quickly find new friends, whereas intro-
verts could need some time to establish same amount
of friends. Merging two cooperate networks will not
be influenced by personal attitudes. For the scenario
that company A is acquiring another company B it
could be assumed that companies A’s structure will
undergo only little changes, while the latter could be
fully restructured such that employees of company B
will be integrated into company A’s structure.

Those local effects are present throughout the
whole network. While multiple connections will
be lost, new connections will be established. The
field of graph modeling offers us multiple models for
the generation of such graphs like the Erdős-Rényi-
model [1] and the Watts-Strogatz-model [2]. Ad-
ditionally, the Barabási-Albert-model [3] is able to
produce scale-free networks. Those are known for
having few high connected nodes called hubs and
much low connected ones. The latter model was
already used to model the world wide web [4, 5]
or movie co-occurrences between Hollywood ac-
tors [6]. Since social networks are claimed to be
scale-free networks our initial analysis focuses on al-
tering graphs following the Barabási-Albert-model.

The Barabási-Albert-model is build up by con-
stantly adding nodes to an existing graph. Therefore
an existing network can easily be expanded using the

growing mechanism or shrinked by reverting previ-
ous expansions. Nevertheless this does not explain
all observable features in real-world networks. For
instance networks are able to split into separate net-
works when communication between two subgroups
ceases e.g. a group of classmates which is falling
apart after graduation or the well-known karate club
data set presented by Zachary in [7]. The opposite
effect, a merge of two previously distinct networks,
is also plausible as described in the case of two join-
ing enterprises. Since the general growing mecha-
nism cannot be used to model those large changes,
further algorithms need to be developed to meet all
observable requirements.

The purpose of this paper is:

• to propose multiple algorithms for merging
and dividing social network graphs based on
networks generated using the Barabási-Albert-
model. Algorithms will be focusing on differ-
ent graph properties taking the characteristics
of said real-world examples into account. See
Section 3 for a full presentation of algorithms.

• to compare local and global influences of our
merging and dividing approaches in Section 4

• to analyze the applicability of proposed algo-
rithms to other graph models like the Erdős-
Rényi-model and the Watts-Strogatz-model.

A short discussion of the results and ideas for future
work will be presented in Section 7. Some of the
results are already published in [8].

2 Related Work

Before we present our algorithms for merging and
dividing graphs we shortly summarize graph related
terms in the following sections. Afterwards we in-
troduce typical graph models, which will be used to
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test proposed algorithms. We further highlight sim-
ilarities and differences of used models in the final
subsection.

2.1 Graphs

Our example of people staying connected to each
other, as already being said, can be modeled as a
graph. Here each person will be a node and two per-
sons regularly communicating will be connected us-
ing an edge. If a person changes its communication
behavior edges can be added or removed and there-
fore the graph can be altered over time. Persons join-
ing in the group of people modeled in the graph can
be added as additional nodes.

We will use the following graph notation for later
sections. Let G = (V, E) be a graph, with the
set of nodes V and the set of edges E such that
E ⊆ {(u,v) | u 6= v; u,v ∈V}. For sake of simplicity
we will assume that edges are always undirected and
therefore the edges e = (u,v) and e′ = (v,u) be the
same. We will use index notations V (gi) and E(gi)
to distinguish the nodes and edges of graphs gi.

The number of links a node has is typically used
to measure its connectivity. This is called the node
degree and uses the notation kn = |{e = (u,n) | e ∈
E; u ∈ V}|. Let P(k) be the degree distribution of
the network. While the individual node degree rep-
resents a local graph property, the degree distribution
can be used as a global graph property. Note that for
scale-free networks the degree distribution follows a
power-law function.

Additionally a graph can consist of a set of con-
nected components. A connected component is a
maximal subgraph in which any two nodes are con-
nected to each other by at least one path. Whereas
two subgraphs are connected if a path from one to
the other exists.

Merging of two formerly separated subgraphs
g1 = (V (g1),E(g1)) and g2 = (V (g2),E(g2)) is de-

fined by creating a new graph g such that V (g) =
V (g1) ∪V (g2), where E(g) contains at least one
edge e = (u,v), u ∈ V (g1), v ∈ V (g2). Dividing
a graph into two subgraphs works vice versa. The
nodes of the divided graph will be distributed to
the subgraphs g1 and g2 while holding the condition
V (g1)∩V (g2) = /0.

Multiple generative graph models exist in the field
of social networks. The following sections will in-
troduce famous examples and takes a look at their
properties. We will start with the Barabási-Albert-
model since it forms the basis of our analysis.

2.2 Barabási-Albert-model

A global property of social networks is the scale-free
property. It states that the node degree distribution
follows nearly a power law function. Such a dis-
tribution could be observed in analyzing real world
networks like the world wide web.

Barabási and Albert observed the scale-free prop-
erty and searched for mechanisms explaining this re-
sulting distribution. In their observations they found
that new nodes favor the connection to well estab-
lished nodes in the network. This mechanism is
called preferential attachment and used for the gen-
eration of the model. Using the preferential attach-
ment mechanism they were able to generate random
scale-free networks. The procedure will be shortly
explained in detail as follows [3].

The creation of the network starts with an initial
set of m0 nodes. Every new node will be connected
to nodes in the graph using m edges, where m≤ m0.
The probability for a new node connecting to an ex-
isting node n is

pn =
kn

∑ j k j
(1)

where kn is the node-degree of node n, which is di-
vided by the sum of all node-degrees. This results in
the development of heavily linked nodes called hubs,
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which are linked to a great part of the graph. More
generally the degree distribution of the full graph fol-
lows a power law function of the form

P(k)∼ k−γ; γ = 2.9±0.1 . (2)

By the definition of the preferential attachment
strategy older nodes have higher chances to become
hubs. In the case of m = m0 we recommend to
use a fully connected initial graph for the m0 nodes.
Otherwise the model will be biased to favor the
(m0 + 1)-node, because it has the maximal node-
degree. We will make use of this throughout our pro-
posed methods for merging and splitting Barabási-
Albert-Graphs.

A drawback of the Barabási-Albert-model is that it
is unlikely to result in multiple components. This can
happen when the initial set of nodes consists of mul-
tiple connected components and further iterations do
not connect those. If we choose to start with a com-
plete graph, it will always result in one connected
component. An extension of the original generative
algorithm tries to increase the clustering capabilities.
Holme and Kim proposed to add a fourth step to the
generation process [9]. Adding a node with m edges
will be done by choosing the first edge per prefer-
ential attachment. In variation to the standard pro-
cess further edges can also be added with the al-
ternative triad formation step. Here, a new edge is
added such that the new node, the node from the first
preferential attachment step and a third node form a
triad. With probability p we chose between using
a triad formation step instead of preferential attach-
ment step. The authors conclude their alteration in-
creases clustering while maintaining the power-law
distribution of node-degrees. We will compare our
algorithms for their use on pure Barabási-Albert-
graphs and the alteration of Holme and Kim later
referred as Extended-Barabási-Albert-graphs in sub-
subsection 6.1.3.

The Barabási-Albert-model was a first attempt to
explain the existence of node degree distributions
following a power law function and the emergence
of hubs. However, another drawback was that the
model could not explain how new nodes could be-
come hubs very fast. For instance, relating to the
world wide example, the rise of Google as one of the
most linked web pages of the world wide web. The
model was extended using a fitness model described
in [10] to explain such a behavior. However such
extensions will not be regarded in this paper.

2.3 Watts-Strogatz-model and Erdős-
Rényi-model

Since we will compare our algorithms for the appli-
cation on the Watts-Strogatz-model and the Erdős-
Rényi-model, we will shortly summarize both below.

The Watts-Strogatz-model [2] constructs a ran-
dom graph G(n,k,β) by starting with N nodes each
connected to K neighbors. As a second step all edges
are rewired with probability β. This is done by re-
placing an edge (ni,n j) by (ni,nk), where k 6= i and
the edge does not already exist. Note that it is possi-
ble that the resulting graph consists of multiple con-
nected components.

The Erdős-Rényi-model [1] is divided into two
closely related variants. The first chooses one of all
possible graphs G(n,M) with M edges and n nodes,
where each graph has an equal probability. This
could be done by choosing N edges from the

(n
2

)
possible edges. Second variant G(n, p) starts with
an initial set of n unconnected nodes and includes
edges with probability p [11]. It can easily be de-
duced that each graph with n nodes and M edges is
equally likely with probability

pM(1− p)(
n
2)−M . (3)

As in the Watts-Strogatz-model it is possible that the
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graph created by both variants consists of multiple
connected components.

2.4 Comparison of the models

A limitation of the Watts-Strogatz-model and the
Erdős-Rényi-model is that they are not able to pro-
duce a node degree distribution following a power
law function. Also both do not provide a growing
mechanism, which fixes them to the initial set of
nodes.

Figure 1 shows examples of the four discussed
graph models. The first one was created using the
Erdős-Rényi-model. We can see that the graph con-
sists of two connected components. The second
graph is based on the Watts-Strogatz-model. The
rewiring probability β was set to 0.3. Two edges
were rewired in the generation process. Even if this
graph shows one connected component it is also pos-
sible that two components would have developed.
Both graphs to the right are based on the Barabási-
Albert-model and its extension. Typical for the both
versions is that it is always one connected component
and some nodes have a much higher node-degree.
The latter shows a much higher degree of clustering,
which can be seen by the high amount of connected
triads.

3 Altering Barabási-Albert-Graphs

We already discussed the process for generating a
Barabási-Albert-Graph. Altering this graph by grow-
ing or shrinking the network can be implemented us-
ing the preferential attachment mechanism or revers-
ing it. The Barabási-Albert-model itself is based on
the approach of adding one node at a time and con-
necting this to other nodes. Growing the graph can
be based on further iterations of this generation pro-
cess.

Reversing last iteration steps results in shrinking
the graph. If the order of adding nodes is unknown
we need to estimate the order in which nodes were
added to the graph. An implication of the pref-
erential attachment mechanism is that older nodes
probably have a higher node degree. For that rea-
son we can guess that sorting the nodes increasingly
by their node degree gives us a proper estimate for
their amount of time being part of the graph. In a
noise free network at least one node should have ex-
actly m edges, which is a good candidate to be re-
moved. Otherwise we simply remove the node with
the smallest node-degree. However it cannot be as-
sured that the model still holds true for the resulting
graph.

We will use the following subsection to describe
more complex algorithms for merging and divid-
ing Barabási-Albert-Graphs. For some algorithms
we will need to estimate the parameters a Barabási-
Albert-Graph is based on. Therefor we will first ex-
plain how those can be estimated.

3.1 Estimating Barabási-Albert-Model At-
tributes

An existing Barabási-Albert-graph is based on the
amount of initial nodes m and the number of edges
each node gets connected to previous nodes m0. For
an existing Barabási-Albert-graph we need to esti-
mate the attributes of the generation process. These
are the amount of initial nodes m0 and the number of
edges per new node m.

Let nt be the total number of nodes present in the
graph and na = nt−m0 the number of nodes added in
the growing phase. Similar we define et as the total
number of edges in the graph, which is the sum of
edges from the initial phase e0 and the edges from
the growing phase ea = na ·m.

Depending on the assumption of the initialization
e0 is between 0 (starting with no edges at all) and
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Figure 1: Comparison of graph models, a) Erdős-Rényi-model generated using the second variant G(n, p)
with p = 0.25, b) Watts-Strogatz-model with 0.3 probability for rewiring, c) Barabási-Albert-model with
m0 = m = 1, d) extended Barabási-Albert-model by Holme and Kai with m0 = m = 2, and p = 0.5

0.5 ·m0 · (m0−1) (full-connected graph).
Based on this, we get:

na ·m ≤ et ≤ na ·m+
m0 · (m0−1)

2
(4)

et

na
≥ m≥ et

na
− m0 · (m0−1)

2na
(5)

et

nt −m0
≥ m≥ et

nt −m0
− m0 · (m0−1)

2(nt −m0)
(6)

Previously we assumed that the graph after the
initialization phase is fully connected. For the case
that m = m0 and we are always starting with a full-
connected graph of m nodes the equation can be re-
duced to:

et = (nt −m) ·m+
m · (m−1)

2
(7)

0 = m2−2 · (nt −
1
2
) ·m+2 · et (8)

m1,2 = nt −
1
2
±
√

(nt −
1
2
)2−2 · et (9)

Experiments showed that subtracting the value of the
square root in Equation 9 results in a correct estima-
tion of m.

Furthermore we will need an estimation of the
parameter m for a merge-graph g of two Barabási-
Albert-Graphs g1 and g2 and the reverse operation
of dividing graph g into two Barabási-Albert-Graphs

g1 and g2. The latter case can be solved trivially
by setting m1 and m2 equal to the estimates m of
the divided graph. Deciding about an estimate for
the value m of a merge-graph can be more compli-
cated, except the trivial case of both graphs hav-
ing an equal parameter m such that m1 = m2. In
this case we can estimate m1 and m2 for both sub-
graphs separately and return m = m1 = m2. Other-
wise we will have to find a value for m big enough
to reach at least the same number of edges in the
merge graph as the sum of edges in both subgraphs
(|E(g)| ≥ |E(g1)|+ |E(g2)|). The estimation of the
parameter m of a merge graph is described in the fol-
lowing algorithm.

1: function ESTIMATEM(Graph: g1,g2)
2: m1← estimateM(g1)
3: m2← estimateM(g2)
4: nt ← |V (g1)|+ |V (g2)|
5: m← min(m1,m2)
6: loop
7: e← (nt −m) ·m+ m·(m−1)

2
8: if e≥ |E(g1)|+ |E(g2)| then
9: return m

10: else
11: m← m+1
12: end if
13: end loop
14: end function
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3.2 Merging of two Graphs

In the following we describe four strategies and their
underlying motivation to merge two graphs.

3.2.1 Random Merge

To provide a baseline for later experiments we will
use the random merge algorithm (RM). It is the sim-
plest way of merging two graphs by picking up all
their nodes and add them in random order to a new
Barabási-Albert-Graph.

1: function RANDOMMERGE(Graph: g1,g2)
2: m← estimateM(g1,g2)
3: graph← EmptyBarabasiGraph(m)
4: nodes←V (g1)∪V (g2)
5: nodes.shuffle()
6: for all node← nodes do
7: graph.addNode(node)
8: end for
9: return graph

10: end function
The complexity of this algorithm is O(n), where n

is the number of nodes in both graphs.
While being the simplest way we could not expect

the resulting graph to preserve properties of the input
graphs. The only thing, which could be expected is,
that the Barabási-Albert-model properties hold in the
resulting graph.

3.2.2 Node-Degree-Order Merge

The second algorithm we propose focuses on pre-
serving the node degree of every node. One exem-
plary use-case would be the differentiation of ex-
troverts and introverts. Consider two groups from
different schools merged by getting to know each
other. Individual connectivity of a node should be
preserved after the merge such that nodes represent-

ing extroverts will have more connections than intro-
verts before and after the merge.

The preferential attachment strategy used in the
Barabási-Albert-model leads to early added nodes
having much more connections than later ones.
Therefore we take all nodes of both graphs and put
them in a combined list. Nodes will be added to a
new Barabási-Albert-Graph in decreasing order of
their node degree. With this strategy it is expected,
that the node-degree distribution relating to the spe-
cific nodes is the same.

1: function NODEDEGREEMERGE(Graph: g1,g2)
2: m← estimateM(g1,g2)
3: graph← EmptyBarabasiGraph(m)
4: nodes←V (g1)∪V (g2)
5: nodes.sortByNodeDegree(′desc′)
6: for all node← nodes do
7: graph.addNode(node)
8: end for
9: return graph

10: end function
The complexity of this algorithm is O(n · logn),

where n is the number of nodes in both graphs. The
main complexity is a result of the sorting operation
on almost presorted lists.

3.2.3 Preserving-Nodes Merge

Relating to our company example, where one en-
terprise acquired the other, we need a merge strat-
egy which preserves the structure of one child graph
as much as possible. Our observations resulted in
the definition of the preserving-nodes merge (PNM).
The main idea is to keep the full structure of one
input graph and add the other node by node to the
resulting merge-graph. Based on the node-degree-
order merge, nodes from the second input graph are
inserted in decreasing order of their node degree.

1: function PRESERVINGNODESMERGE(
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Graph: g1,g2)
2: m← estimateM(g1,g2)
3: nodes←V (g2)
4: nodes.sortByNodeDegree(′desc′)
5: for all node← nodes do
6: g1.addNode(node)
7: end for
8: return graph
9: end function

The complexity of this algorithm is O(n · logn),
where n is the number of nodes in the second graph

From construction this strategy keeps all the infor-
mation of the first graph. The inner structure of the
second graph is lost, but the node-degree distribution
relating to the specific nodes of the second graph is
the same.

Since the first graph is used as the base for the
merge, throughout the preferential attachment it is
highly probable that new nodes will preferentially be
connected to nodes of the first graph. This leads to a
domination of the nodes from the first graph and will
increase their node degree much more as nodes from
the second graph.

Based on our real-world example of two enter-
prises, in which one acquires the other, this could
model rising connection between managers of the
acquiring company and workers of the second com-
pany. The structure of the buying company will not
change significant. Only few edges to nodes of the
bought company will be added. Managers of the ac-
quired company will be integrated first in the new
company structure and therefor are more likely to be
placed in higher positions with more influence and
connections in the new merges company. Finally
workers of the bought company will be integrated in
the daily workflow.

3.2.4 Minimal-Merge

For our last merge strategy we again go back to the
analysis of two real world examples. For instance
we could model two groups of friends rarely having
contact to people outside the group or two enterprises
increasing their communication to each other. Both
examples will experience nearly no changes in the
base graphs when merged.

The minimal merge (MM) tries to model such an
behavior and focuses on keeping most of the struc-
ture of both graphs. The main idea is to use both
graphs and connect them with additional edges. To
do so, we increase the estimated m. Now we have
free edges, we can use to connect both graphs. Sim-
ilar to the basic Barabási-Albert-approach we select
nodes proportional to there node-degree.

1: function MINIMALMERGE(Graph: g1,g2)
2: m← estimateM(g1,g2)+1
3: g← UnionBarabasiGraph(g1,g2,m)
4: eadd = g.getMaxEdges()−|E(g)|
5: while eadd > 0 do
6: n1←V (g1).preferedSelect()
7: n2←V (g2).preferedSelect()
8: g.addEdge(n1,n2)
9: eadd ← eadd−1

10: end while
11: return graph
12: end function

The complexity of this algorithm is O(n). This
strategy keeps most of the structure, with the draw-
back of increasing the number of edges per node.

3.3 Dividing into two Graphs

After giving some examples for merging graphs, we
want to add five strategies for dividing a graph in two
subgraphs. Each algorithm will use the parameters
graph (g) and the number of nodes expected in the
first subgraph (noNodes1).
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3.3.1 Random-Divide

As in the case of merging two graphs we provide one
algorithm as baseline for comparison in our evalua-
tion experiments. The random-divide strategy (RD)
is the simplest idea to divide a given graph. The ba-
sic idea is to create two sets of nodes, for each new
graph one. Then create a new Barabási-Albert-graph
from both of these sets.

1: function RANDOMDIVIDE(
Graph: g, noNodes1)

2: v1←V (g).randomSelect(noNodes1)
3: v2←V (g)− v1
4: m← estimateM(g)
5: g1← EmptyBarabasiGraph(m)
6: g2← EmptyBarabasiGraph(m)
7: for all node← v1 do
8: g1.addNode(node)
9: end for

10: for all node← v2 do
11: g2.addNode(node)
12: end for
13: return g1,g2
14: end function

The complexity of the random-divide strategy is
O(n), where n is the number of nodes. This simplest
method does not care about the underlying struc-
ture of the graph, but it ensures the properties of a
Barabási-Albert-Graph in the resulting graphs.

3.3.2 Random-Subgraph-Divide

An alteration of the Random-Divide lead us to
the second strategy called Random-Subgraph-Divide
(RSD). The set of nodes is randomly split into two
subsets, which will be used to create two child
graphs. Connections within those subgraphs will be
preserved. However this will lead to graphs violating
the Barabási-Albert-properties. Therefor we have to
include repairing steps, which will be described in

detail in Subsection 3.4.
1: function RANDOMSGDIVIDE(

Graph: g, noNodes1)
2: v1←V (g).randomSelect(noNodes1)
3: v2←V (g)− v1
4: e1 = {(x1,x2) : ∀(x1,x2)∈E(g)∧x1,x2 ∈ v1}
5: e2 = {(x1,x2) : ∀(x1,x2)∈E(g)∧x1,x2 ∈ v2}
6: g1← Graph(v1,e1)
7: g2← Graph(v2,e2)
8: m1← estimateM(g1)
9: m2← estimateM(g2)

10: repairGraph(g1,m1)
11: repairGraph(g2,m2)
12: return g1,g2
13: end function

The complexity of our second divide algorithm is
O(n2), where n is the number of nodes. The increase
in complexity results from our repairing mechanism.

3.3.3 Subgraph-Expansion-Divide (SED)

We already preserved some connections between
nodes in the RSD. The main drawback of this method
seems to be the extensive use of the repairing op-
eration to reconnect each of the subgraphs to one
connected component. To improve the Random-
Subgraph-Divide we chose a node set, which forms
one connected component. We achieve this by itera-
tively adding nodes to the current subgraph until the
size of first graph is reached. For simplicity this step
was implemented using a breadth-first search (BFS).
Maximum-cardinality search could be used as an al-
ternative search scheme. See [12] for a detailed de-
scription. We assume that the compactness of the re-
sulting subgraph should be higher, but experiments
still have to be performed.

However it cannot be guaranteed that both
graphs approximate properties of the Barabási-
Albert-model e.g. the second subgraph can be split
into several components. In addition, both graphs
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could still lack some edges, so both need to be re-
paired using the repair-operator described in Subsec-
tion 3.4.

1: function SUBGRAPHEXPDIVIDE(
Graph: g, noNodes1)

2: startNode← g.NodeWithLowestDegree()
3: v1← BFS(startNode,noNodes1)
4: v2←V (g)− v1
5: e1 = {(x1,x2) : ∀(x1,x2)∈E(g)∧x1,x2 ∈ v1}
6: e2 = {(x1,x2) : ∀(x1,x2)∈E(g)∧x1,x2 ∈ v2}
7: g1← Graph(v1,e1)
8: g2← Graph(v2,e2)
9: m← estimateM(g)

10: repairGraph(g1,m)
11: repairGraph(g2,m)
12: return g1,g2
13: end function

The complexity of our last divide is O(n), where
n is the number of nodes in the graph. The repairing
step increases the complexity to O(n2).

3.3.4 Node-Degree-Divide A

As it was already modeled in the Node-Degree-
Merge, we differentiated nodes by their node degree.
The Node-Degree-Divide A (NDDa) is based on the
same principle. First we order all nodes descending
by their node-degree. Second we split this list and
use the first part for the first subgraph and the second
accordingly. Nodes are then added in order of their
node degree. Edges between the nodes will not be
preserved.

1: function NODEDEGREEDIVIDEA(
Graph: g, noNodes1)

2: m← estimateM(g)
3: g1← EmptyBarabasiGraph(m)
4: g2← EmptyBarabasiGraph(m)
5: nodes←V (g)
6: nodes.sortByNodeDegree(′desc′)

7: for all node← nodes[: noNodes] do
8: g1.addNode(node)
9: end for

10: for all node← nodes[noNodes :] do
11: g2.addNode(node)
12: end for
13: return g1,g2
14: end function

The complexity of this algorithm is O(n · logn),
where n is the number of nodes in the graph. Since
this strategy keeps the Barabási-Albert-properties
and also the node-degree distribution related to the
nodes, no repairing operation is needed.

3.3.5 Node-Degree-Divide B (NDDb)

This strategy is closely related to NDDa and modifies
the splitting strategy of the ordered list of nodes. A
drawback of the first strategy is that the node degree
distribution following a power law function results
in two distinct distributed subsets. While the first
includes nodes with a wide range of node degrees,
the second subset could be nearly evenly distributed.

For that reason we do not split the list into two
parts, but instead we pick alternating elements for
every subgraph, with respect to the selected relation.
The function createIndexList() returns all node in-
dexes of nodes used for the first subgraph such that
when possible they are equally spaced to each other.

This alternative picking strategy ensures that each
subgraph includes some of the top connected nodes,
while overall fairly distributing nodes of the originat-
ing node-degree distribution between both graphs.
However, equal to the NDDa algorithm, edges be-
tween picked nodes will not be preserved.

1: function NODEDEGREEDIVIDEB(Graph: g,
noNodes1)

2: m← estimateM(g)
3: g1← EmptyBarabasiGraph(m)
4: g2← EmptyBarabasiGraph(m)
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5: nodes.sortByNodeDegree(′desc′)
6: indexlist ←

createIndexList(|V (g)|, noNodes1)
7: for all node← nodes do
8: if index(node) in indexlist then
9: g1.addNode(node)

10: else
11: g2.addNode(node)
12: end if
13: end for
14: return g1,g2
15: end function
The complexity of strategy NDDb is O(n · log(n))
where n is the number of nodes. The increased effort
for picking nodes does not influence the complexity
class and therefor is equal to NDDa.

3.4 Repairing-Steps

Two of our divide algorithms, namely Random-
Subgraph-Divide and Subgraph-Expansion-Divide,
can produce graphs that do not hold typical prop-
erties of the Barabási-Albert-model. We created a
repairing-operation which tries to achieve the three
properties:

1. Barabási-Albert-graph is always one connected
component

2. Every node has at least m edges, respectively
each node n ∈V has a node-degree of kn ≥ m

3. The maximal number of edges is

na ·m+
m · (m0−1)

2
(10)

This does not lead to a graph perfectly following the
Barabási-Albert-model, but achieves the most prop-
erties with minimal manipulation of the graph. If the
graph consists of multiple connected components,
additional edges will be used to connect all to one

component. Further on edges will be added to in-
crease the node-degree of all nodes having a de-
gree lower than m. For the case that the number
of edges is not high enough an recursive run with
repairGraph(g,m+ 1) will be started. If first two
steps did not use up all edges, remaining edges will
be added using preferential attachment.

1: function REPAIRGRAPH(Graph: g, m)
2: if |V (g)| ≤ m then
3: return completeGraph(V(g))
4: end if
5: eadd = getMaxEdges(g)−|E(g)|
6: while |g.components|> 1 do
7: if eadd < 0 then
8: return repairGraph(g,m+1)
9: end if

10: source← V(g).randomSelect(1)
11: target ← V(g).randomSelect(1)
12: Connect(source, target)
13: eadd ← eadd−1
14: end while
15: for all node←{n : n ∈V (g),kn < m} do
16: while node.degree < m do
17: if eadd < 0 then
18: return repairGraph(g,m+1)
19: end if
20: target← V(g).preferedSelect(1)
21: g.addEdge(node, target)
22: eadd ← eadd−1
23: end while
24: end for
25: while eadd > 0 do
26: source← V(g).preferedSelect(1)
27: target ← V(g).preferedSelect(1)
28: g.addEdge(source, target)
29: eadd ← eadd−1
30: end while
31: return g
32: end function
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The repair operator has a complexity of O(n2) where
n is the number of nodes.

The repairing process is based on the generative
mechanisms of the original model. On the one hand
it could be argued that a better approximation of the
power-law function could be achieved by calculating
the desired distribution beforehand and use the re-
maining edges to fit this distribution. One the other
hand we want the power-law distribution to be a re-
sult of the preferential attachment strategy and not
created by force. Therefor we focused on a minimal
change of the start graph using the preferential at-
tachment strategy to achieve properties listed above.

4 Experiments

The following subsections will describe our experi-
ments for evaluating the behavior of proposed merge
and divide algorithms for Barabási-Albert-Graphs.
Subsection 4.3 introduces our comparison measures.
Additionally we recorded run times of all algorithms.
See Section 5 for results.

4.1 Merging of two Graphs

We used Barabási-Albert-Graphs of differing size
and (n) and connectivity (m0 = m). Our four sce-
narios test the algorithm behavior for a merge of two
graphs based on equal parameters and differences in
one or both parameters. The following test scenar-
ios formed the basis for our comparison of Barabási-
Albert-graphs:

name n1 m1 n2 m2

equal 5000 3 5000 3
diff_m 5000 3 5000 8
diff_size 5000 8 25000 8
diff_all 5000 8 25000 3

4.2 Dividing into two Graphs

Similar to the experiments for merging graphs we di-
vided graphs in different ratios of nodes in the result-
ing subgraphs. Following test scenarios were created
for dividing a Barabási-Albert-graph into two sub-
graphs:

name n m noNodes1

10 : 90 10000 5 1000
20 : 80 10000 5 2000
30 : 70 10000 5 3000
40 : 60 10000 5 4000
50 : 50 10000 5 5000

4.3 Measurements

To measure the quality of each algorithm, we focus
on three aspects derived from real world observa-
tions, namely edge preservation, node-degree rank
and node-degree distribution.

4.3.1 Edge Preservation

One of our merging examples was the increased co-
operation of two enterprises. In this case the inner
structure of both graphs is nearly untouched. This
means, that nodes which are connected before are
also connected after the merge. Not connected nodes
should be separate after the merge, as well.

We can measure such a behavior by calculating
the percentage of preserved edges during the alter-
ation process. Because of different usage of graph
information during the merge and divide operations,
e.g. PNM only preserves edges of the first graph, this
has to be calculated for both graphs individually.
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4.3.2 Rank-Correlation

Another property already discussed is the differenti-
ation of extroverts and introverts. Nodes could pos-
sibly establish a wide range of connections. We sug-
gest that nodes which are more active, or stronger
connected should also have a higher node-degrees in
the resulting graphs.

To estimate this, we calculate the node-degree
rank of every node in both graphs. Afterwards, we
calculate the two well known rank correlation co-
efficients Spearman’s ρ [13, Section 14.7] including
tie-correction and Kendall’s τ [14]. These measures
have a range from −1 to +1, where +1 (−1) in-
dicates that the order is completely preserved (re-
versed).

4.3.3 Node-Degree Distribution

Based on the Barabási-Albert-model the node-
degree of all nodes in the graph should follow a
power-law distribution, described in Equation 2.

We determine the node-degree distribution of the
resulting graph and compare them with the theoret-
ical node-degree distribution based on the presented
formula and the number of edges in the graph. We
calculate the root-mean-squared-error to check how
good the distribution fits the node-degree distribution
of our graph.

5 Results

In the following section we present the results of our
experiments. First we give a brief comparison about
the run times, and afterwards we show the in Subsec-
tion 4.3 described measures.
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Figure 2: Computation time for merge operators with
different graph sizes

5.1 Merging of two Graphs

5.1.1 Computing Time

In Figure 2 we show the run time for the presented
merge algorithms. We used two graphs with the
same number of nodes and a connectivity of m = 4.
The measurement is based on 10 runs for each graph
size. The runtime for all algorithms is almost linear
in graph-size.

This is due to the fact that the constants of the log-
arithmic parts from the ordering are relative small in
contrast to the constant factors of the merge process
itself.

5.1.2 Edge Preservation

The edge preservation follows the design of the algo-
rithms. The Minimal-Merge preserves all edges, and
the Preserving-Nodes Algorithms the edges from the
first graph. All others algorithms lose the inner struc-
ture. A more detailed view can be taken from Ta-
ble 1. The first part of every column describes the
percentage of preserved edges from the first result-
ing subgraph, and the second part the other subgraph
respectively.
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Merge equal diff_m diff_size diff_all

RM 0.1 / 0.1 0.1 / 0.1 0.1 / 0.1 0.0 / 0.0
NDM 0.4 / 0.4 0.3 / 1.1 0.3 / 0.4 0.5 / 0.1
PNM 100 / 0.0 100 / 0.0 100 / 0.0 100 / 0.0
MM 100 / 100 100 / 100 100 / 100 100 / 100

Table 1: Average part of edges preserved after merge-operation in percent

5.1.3 Rank Correlation

Recorded values were averaged over 100 iterations
of specified experiments and are shown in Table 2
and Table 3. The baseline algorithm Random-
Merge (RM) had always values around 0 which
indicates that degree rank order before and after
the merge stand in no correlation to each other.
Preserving-Node-Merge (PNM) performed better in
the merge of two equal graphs and on the same
level as RM for graphs with differing m. The
Node-Degree-Merge algorithm (NDM) ranked sec-
ond best in first three experiments. For an equal
merge both rank-correlation coefficients had much
higher values (ρequal = 0.726 and τequal = 0.625)
than PNM. It reached even higher values for merg-
ing graphs with differing m (ρdiff _m = 0.842 and
τdiff _m = 0.709) and differing size (ρdiff _m = 0.874
and τdiff _m = 0.779). However PNM performed bet-
ter than NDM for graphs differing in size and con-
nectivity (ρdiff _all = 0.850 and τdiff _all = 0.718). The
algorithm Minimal-Merge (MM) scored best with
values near to +1 for both experiments. This is due
to the minimal change by adding just a few edges.

5.1.4 Node-Degree Distribution

Table 4 shows the RMSE between the observed
node-degree and the theoretical node-degree distri-
bution. The upper part of the table shows the RMSE

Merge ρequal ρdiff _m ρdiff _size ρdiff _all

RM 0.000 -0.001 0.000 0.001
NDM 0.726 0.842 0.874 0.779
PNM 0.475 -0.134 0.612 0.850
MM 1.000 0.979 1.000 0.985

Table 2: Measured values for Spearman’s ρ

Merge τequal τdiff _m τdiff _size τdiff _all

RM 0.000 0.000 0.000 0.001
NDM 0.625 0.709 0.745 0.661
PNM 0.406 -0.061 0.486 0.718
MM 1.000 0.927 1.000 0.964

Table 3: Measured values for Kendall’s τ

14



RMSE equal diff_m diff_size diff_all

g1 23.2 22.9 4.9 4.8
g2 22.6 4.9 12.3 75.7

RM 38.2 11.7 14.0 53.9
NDM 39.4 12.0 14.3 54.2
PNM 38.3 38.2 14.1 14.3
MM 43.3 199.1 14.8 229.2

Table 4: RMSE of node-degree distribution before
and after merge

for the initial graphs, and below the results for all
merged graphs for every method.

The Random-Merge (RM) algorithm generates the
best results except for the diff_all dataset. Minimal-
Merge (MM) leads to huge errors, especially with
different m. This is based on the fact, that most of
the inner structure is kept and no combined graph
with all nodes is created from scratch. PNM and
NDM generate results with RMSE between the ini-
tial graphs.

5.2 Dividing into two Graphs

5.2.1 Computing Time

Figure 3 shows the run time for the presented divide
algorithms. We used a graph with a connectivity of
m = 4. The divide operation divides the graph into
two subgraphs with the same size. The measurement
is based on 10 runs for each graph size.

The two algorithms using the repair operator are
slower then the other ones. The Random-Divide
(RM), and the Node-Degree-Divide (NDDa, and
NDDb) algorithms are almost equal and linear in
computation time. The Random-Subgraph-Divide
(RSD) algorithms looks also linear, which is an in-
dication that the repair operation is less used in this
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Figure 3: Computation time for divide operators with
different graph sizes

algorithm than in the Subgraph-Expansion-Divide
(SED) algorithm.

5.2.2 Edge Preservation

The RSD and the SED preserve all structure infor-
mation from the selected subgraph. The NDD algo-
rithms preserve some structure, (2− 4%), while the
Random Divide loses almost all inner structure. De-
tailed information is presented in Table 5. The first
part of each column represents the portion of pre-
served edges from the first resulting subgraph, and
the second portions represents the ratio of the other
subgraph.

5.2.3 Rank Correlation

Measured rank-correlations of all divides are shown
in Table 6 and Table 7. Recorded values were av-
eraged over 100 iterations of specified experiments.
It can be seen that our baseline algorithm Random-
Divide (RD) shows no correlation between the de-
gree rank order before and after the divide. So
the order of nodes by their node degree before the
divide has no effect on the order of nodes after
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Divide 10:90 20:80 30:70 40:60 50:50

RD 1.0 / 0.1 0.5 / 0.1 0.3 / 0.1 0.2 / 0.2 0.2 / 0.2
RSD 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100
NDDa 3.9 / 0.2 2.3 / 0.2 1.6 / 0.2 1.3 / 0.3 1.1 / 0.3
NDDb 4.0 / 0.7 2.5 / 0.8 1.8 / 0.9 1.4 / 1.0 1.1 / 1.2
SED 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100

Table 5: Average part of edges preserved after divide-operation in percent

the divide. The algorithms Node-Degree-Divide-
A (NDDa) and Subgraph-Expansion-Divide (SED)
scored nearly similar for uneven divides (see ρ10:90
and τ10:90). However SED seems to be more re-
sistant to a change of the node-ratio. The rank-
correlation values of SED are slowly declining from
ρ10:90 = 0.675 to ρ50:50 = 0.516 (decrease of≈23%).
Whereas rank-correlation values of NDDa were de-
creasing from ρ10:90 = 0.661 to ρ50:50 = 0.385 (de-
crease of ≈42%). Similar observations can be
done comparing values for Kendall’s τ. Random-
Subgraph-Divide (RSD) was evaluated as second
best algorithm. Both correlation coefficients have
a high range of values, where distributing nodes
in a ratio of 30:70 resulted in minimal values of
ρ30:70 = 0.632 and τ30:70 = 0.520. Higher values
were reached for more equal divides with a ratio of
50:50 (ρ50:50 = 0.722 and τ50:50 = 0.612) or more
uneven divides with a ratio of 10:90 (ρ10:90 = 0.771
and τ10:90 = 0.709). The Node-Degree-Divide-B
(NDDb) algorithm scored best with nearly constant
values of ρ≈ 0.813 and τ≈ 0.692.

5.2.4 Node-Degree Distribution

The measured root-mean-squared-error for all divid-
ing algorithms is presented in Table 8. The Random-
Divide Algorithm (RD) as well as the Node-Degree-
Divide algorithms (NDDa, and NDDb) generate sub-

Divide ρ10:90 ρ20:80 ρ30:70 ρ40:60 ρ50:50

RD 0.000 0.001 0.001 0.000 0.000
RSD 0.771 0.650 0.632 0.683 0.722
NDDa 0.661 0.541 0.456 0.401 0.385
NDDb 0.813 0.814 0.813 0.814 0.814
SED 0.675 0.568 0.525 0.511 0.516

Table 6: Measured values for Spearman’s ρ

Divide τ10:90 τ20:80 τ30:70 τ40:60 τ50:50

RD 0.000 0.000 -0.001 0.000 0.002
RSD 0.709 0.558 0.520 0.569 0.612
NDDa 0.561 0.456 0.379 0.330 0.314
NDDb 0.692 0.693 0.692 0.693 0.693
SED 0.558 0.449 0.407 0.394 0.402

Table 7: Measured values for Kendall’s τ
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graphs with a lower RMSE then the initial graph.
On the contrary the Random-Subgraph-Divide
(RSD) algorithm and the Subgraph-Expansion-
Divide (SED) method leads to subgraphs with much
higher RMSE. Both algorithms use much of the un-
derlying structure and the repair method. That is the
reason why the joined node-degree distribution does
not fit the theoretical node-degree distribution pro-
vided by the Barabási-Albert-model.

6 Altering other types of graphs

In this section we focus on graphs generated by other
models. A brief introduction into these models could
be find in Section 2. We performed the same experi-
ments as for the Barabási-Albert-graphs by generat-
ing similar graphs.

In the following we present the experiments and
the results of Erdős-Rényi, Watts-Strogatz, and
Extended-Barabási-Albert graphs.

6.1 Experiments

In our case similar means, that the graphs have simi-
lar number of nodes and edges. For simplicity we as-
sume nedges = nnodes ·m for Barabási-Albert-graphs.
This means that we ignore the special initialization
step. As for the Barabási-Albert-graphs, we run ev-
ery experiment 100 times.

6.1.1 Erdős-Rényi graphs

Our graph generator for Erdős-Rényi graphs uses the
second variant, where p describes the probability of
connecting two nodes. The number of edges in an
Erdős-Rényi graph is binomial distributed with

n = npossible_edges =
nnodes · (nnodes−1)

2
.

The expected value is E(edges) = n · p and should
be similar to Barabási-Albert-graphs E(edges) =
nnodes ·m. For a fixed n we can estimate p by

nnodes ·m =
nnodes · (nnodes−1)

2
· p (11)

p =
2m

nnodes−1
. (12)

We used the following test parameters for merging
two Erdős-Rényi-graphs:

name n1 p1 n2 p2

equal 5000 1.2 h 5000 1.2 h
diff_m 5000 1.2 h 5000 3.2 h
diff_size 5000 3.2 h 25000 0.64 h
diff_all 5000 3.2 h 25000 0.24 h

The split experiments were done with the follow-
ing parameters:

name n m noNodes1

10 : 90 10000 1 h 1000
20 : 80 10000 1 h 2000
30 : 70 10000 1 h 3000
40 : 60 10000 1 h 4000
50 : 50 10000 1 h 5000

6.1.2 Watts-Strogatz small-world graphs

In the Watts-Strogatz-graphs each node is connected
to k neighbors. Every edge is connected with two
nodes, so the number of edges in such a graph is
nedges = 0.5 · n · k. So we set k = 2 ·m to get similar
graphs to the Barabási-Albert-graphs. Additionally
there is a parameter β which describes the random-
ness of the graph. To analyze the influence of β we
did each experiment with β ∈ {0.2,0.4,0.6,0.8}.

The merge experiment setup was the following:
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RMSE 10:90 20:80 30:70 40:60 50:50

g 16.3 16.4 16.2 16.3 16.5

RD(g1) 3.8 5.7 7.2 8.9 10.2
RD(g2) 15.3 14.1 12.8 11.6 10.1
RSD(g1) 91.8 128.8 190.9 197.0 175.0
RSD(g2) 309.6 310.8 283.2 234.2 170.6
NDDa(g1) 3.9 5.7 8.8 8.8 9.8
NDDa(g2) 15.4 14.1 11.8 11.8 10.1
NDDb(g1) 3.9 5.5 8.7 8.7 10.4
NDDb(g2) 15.3 14.2 11.5 11.5 10.1
SED(g1) 32.0 60.8 93.6 127.9 167.5
SED(g2) 442.6 464.0 444.4 412.4 374.9

Table 8: RMSE of node-degree distribution before and after divide

name n1 k1 n2 k2

equal 5000 6 5000 6
diff_m 5000 6 5000 16
diff_size 5000 16 25000 16
diff_all 5000 16 25000 6

Additionally we used the following parameters for
splitting:

name n m noNodes1

10 : 90 10000 10 1000
20 : 80 10000 10 2000
30 : 70 10000 10 3000
40 : 60 10000 10 4000
50 : 50 10000 10 5000

6.1.3 Extended-Barabási-Albert

The Extended-Barabási-Albert-graphs are an exten-
sion of Barabási-Albert-graphs with an additional

parameter p. This parameter specifies a probability
of creating a triangle with neighbor nodes instead of
preferential attachment. We uses exact the same set-
tings as for the Barabási-Albert-graph experiments.
Additionally we vary p ∈ {0.2,0.4,0.6,0.8,1.0}.

6.2 Results

All model produce similar test results, so we sum-
marize them and point out special effects.

6.2.1 Edge Preservation

The edge preservation behavior of the presented al-
gorithms, see Table 10, 11, and 12 for merge and
Table 13, 14, and 15 for split, is similar to Barabási-
Albert-graphs. The NDM, NDDa, and NDDb algo-
rithm generate lower preservations for Erdős-Rényi,
and Watts-Strogatz- graphs.
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6.2.2 Rank Correlation

Also the rank correlation is comparable to Barabási-
Albert-graphs. We figure out that the merging
algorithm PNM produces high negative correla-
tions for the diff_m setting for all alternative mod-
els, see Table 16, 17, and 18. All divide algo-
rithms, beside RD generate lower correlations for
Watts-Strogatz-graphs, especially for low β, Ta-
ble 20. Higher β and Erdős-Rényi-graphs, Ta-
ble 19, behave like Barabási-Albert-graphs. SED
outperforms Extended-Barabási-Albert-graphs w.r.t.
Barabási-Albert-graphs for 10:90, and 20:80, Ta-
ble 21.

6.2.3 Node-Degree Distribution

The merging algorithms RM and NDM create new
strict Barabási-Albert-graphs. So the RMSE de-
scribing the fitting to an optimal scale-free graph
decreases dramatical for Erdős-Rényi-graphs, Ta-
ble 22, and Watts-Strogatz-graphs, Table 23. The
Extended-Barabási-Albert-graph is very similar to
Barabási-Albert-graphs, so this effect is very low.
But we can observe that MM produces better results
then pure Barabási-Albert-graphs, see Table 24, and
25.

The splitting algorithms have a similar behavior.
RD, NDDa, and NDDb create new Barabási-Albert-
graphs so the RMSE of the resulting graphs is
very low, see Table 26, and 27. We can point
out that Extended-Barabási-Albert-graphs have an
higher RMSE as input graphs then Barabási-Albert-
graphs, but the resulting graphs have a lower RMSE,
Table 28, and 28 for RSD and SED..

7 Conclusion

Multiple use cases were present, where it could be
necessary to merge and divide social graphs. Each

theoretical use case had special properties, e.g. pre-
serving node degrees, which we tried to model in
proposed algorithms. It is not possible to determine
one best algorithm for either merging or dividing
Barabási-Albert-Graphs. Every algorithm has its po-
tential use cases and specific benefits in a subset of
our evaluation measures. It is up to the user to de-
cide, which algorithm fits best. A summary of our
experimental evaluation results is shown in Table 9
and can be used as a guideline.

If the input algorithm fulfills the scale-free prop-
erty also the resulting graphs will hold this property.
So the algorithms could be used also for graph which
are not created by a Barabási-Albert-model, but are
scale-free. Due to the fact, that the resulting graphs
have similar node-edge relations the sparsity could
be assured.

The investigated other graph models generate sim-
ilar results then the Barabási-Albert-graphs. The
RM, and NDM merge as well as the RD, NDDa, and
NDDb split transform the graphs into strict Barabási-
Albert-graphs. This yields into loss of the input
structure. The other algorithms could handle the al-
ternative models in way the input structure would be
kept. Naturally, the resulting graphs do not fulfill the
properties of the alternative models.

Results will be included in our tool for event gen-
eration of dynamic social network simulations [15]
in the next step of development. Furthermore the al-
gorithms could be used to improve computational in-
telligence methods, for instance hierarchical cluster-
ing on Barabási-Albert-graphs. Also, our work on
dynamic clusters [16] [17] in social networks will
benefit from these results.

Further research should be done towards the re-
pairing function. With same more advanced repair-
ing steps it would be possible to generate graphs that
to fit more the theoretical node-degree distribution.

We provide a Python implementation of the
presented algorithms at http://bitbucket.org/
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Run- Edge Rank- Node-Degree-
Alg. Time Preservation Correlation Distribution

RM ◦ - - ◦
NDM ◦ - ◦ ◦
PNM ◦ ◦ ◦ ◦
MM ◦ + + -

RD + - - +
RSD ◦ + ◦ -
NDDa + - ◦ +
NDDb + - + +
SED - + ◦ -

Table 9: Oberview of merge and divide algorithms (−,◦,+)

paheld/dynamix.

References

[1] P. Erdös and A. Rényi, “On random graphs,
i,” Publicationes Mathematicae (Debrecen),
vol. 6, pp. 290–297, 1959.

[2] D. J. Watts and S. H. Strogatz, “Collective
dynamics of ‘small-world’ networks,” Nature,
vol. 393, no. 6684, pp. 440–442, Jun. 1998.

[3] A.-L. Barabási and R. Albert, “Emergence of
scaling in random networks,” science, vol. 286,
no. 5439, pp. 509–512, 1999.

[4] R. Albert, H. Jeong, and A.-L. Barabasi, “The
diameter of the world wide web,” Nature,
vol. 401, no. 6749, pp. 130–131, Sep. 1999,
arXiv:cond-mat/9907038.

[5] R. Kumar, P. Raghavan, S. Rajagopalan, and
A. Tomkins, “Extracting large-scale knowledge
bases from the web,” in Proceedings of the 25th
VLDB Conference, 1999, p. 639–650.

[6] A.-L. Barabasi, R. Albert, and H. Jeong,
“Mean-field theory for scale-free random net-
works,” Physica A: Statistical Mechanics and
its Applications, vol. 272, no. 1-2, pp. 173–187,
Oct. 1999, arXiv:cond-mat/9907068.

[7] W. Zachary, “An information flow model for
conflict and fission in small groups,” Journal
of Anthropological Research, vol. 33, pp. 452–
473, 1977.

[8] P. Held, A. Dockhorn, and R. Kruse, “On merg-
ing and dividing of barabasi-albert-graphs,” in
Evolving and Autonomous Learning Systems
(EALS), 2014 IEEE Symposium on. IEEE,
Dec. 2014, pp. 17–24.

[9] P. Holme and B. J. Kim, “Growing scale-free
networks with tunable clustering,” Physical re-
view E, vol. 65, no. 2, p. 026107, 2002.

[10] G. Bianconi and A.-l. Barabási, “Competition
and multiscaling in evolving networks,” Euro-
physics Letters, vol. 54, p. 436–442, May 2001.

20



[11] E. N. Gilbert, “Random graphs,” The Annals of
Mathematical Statistics, pp. 1141–1144, 1959.

[12] R. Kruse, C. Borgelt, F. Klawonn, C. Moewes,
M. Steinbrecher, and P. Held, Computational
Intelligence: A Methodological Introduction,
ser. Texts in Computer Science. New York:
Springer, 2013.

[13] D. Zwillinger and S. Kokoska, CRC standard
probability and statistics tables and formulae.
CRC Press, 1999.

[14] M. G. Kendall, “A new measure of rank corre-
lation,” Biometrika, vol. 30, no. 1-2, pp. 81–93,
1938.

[15] P. Held, A. Dockhorn, and R. Kruse, “Gener-
ating events for dynamic social network simu-
lations,” in Proceedings of 15th International
Conference on Information Processing and
Management of Uncertainty in Knowledge-
Based Systems, ser. Communications in Com-
puter and Information Science, A. Laurent,
O. Strauss, B. Bouchon-Meunier, and R. R.
Yager, Eds. Switzerland: Springer Interna-
tional Publishing, 2014, pp. 46–55.

[16] P. Held, C. Moewes, C. Braune, R. Kruse,
and B. A. Sabel, “Advanced analysis of dy-
namic graphs in social and neural networks,” in
Towards Advanced Data Analysis by Combin-
ing Soft Computing and Statistics, ser. Studies
in Fuzziness and Soft Computing, C. Borgelt,
M. Á. Gil, J. M. C. Sousa, and M. Verleysen,
Eds. Berlin Heidelberg: Springer, 2013, vol.
285, pp. 205–222.

[17] P. Held and R. Kruse, “Analysis and visual-
ization of dynamic clusterings,” in 2013 46th
Hawaii International Conference on System

Sciences. Los Alamitos, CA, USA: IEEE
Computer Society, Jan. 2013, pp. 1385–1393.

21



A Appendix - Detailed Results

In this appendix we present detailed results from
experiments with other models then the Barabási-
Albert graphs.

Merge equal diff_m diff_size diff_all

RM 0.1 / 0.1 0.1 / 0.1 0.1 / 0.1 0.0 / 0.0
NDM 0.1 / 0.1 0.0 / 0.3 0.1 / 0.1 0.2 / 0.0
PNM 100 / 0.0 100 / 0.0 100 / 0.0 100 / 0.0
MM 100 / 100 100 / 100 100 / 100 100 / 100

Table 10: Average part of edges preserved after
merge-operation in percent for Erdős-Rényi-graphs

Merge equal diff_m diff_size diff_all

RM 0.1 / 0.1 0.1 / 0.1 0.1 / 0.1 0.0 / 0.0
NDM 0.1 / 0.1 0.0 / 0.3 0.1 / 0.1 0.2 / 0.0
PNM 100 / 0.0 100 / 0.0 100 / 0.0 100 / 0.0
MM 100 / 100 100 / 100 100 / 100 100 / 100

Table 11: Average part of edges preserved af-
ter merge-operation in percent for Watts-Strogatz
graphs. The results are independent of β

Merge equal diff_m diff_size diff_all

p = 0.2
RM 0.0 / 0.0 0.1 / 0.1 0.0 / 0.0 0.0 / 0.0
NDM 0.3 / 0.3 0.3 / 1.1 0.2 / 0.4 0.5 / 0.1
PNM 100 / 0.0 100 / 0.0 100 / 0.0 100 / 0.0
MM 100 / 100 100 / 100 100 / 100 100 / 100

p = 0.4
NDM 0.3 / 0.3 0.3 / 1.1 0.3 / 0.4 0.5 / 0.1

p = 0.6
NDM 0.3 / 0.3 0.3 / 1.1 0.3 / 0.4 0.5 / 0.2

p = 0.8
NDM 0.3 / 0.3 0.3 / 1.0 0.3 / 0.3 0.5 / 0.2

p = 1.0
NDM 0.3 / 0.3 0.4 / 1.0 0.3 / 0.3 0.4 / 0.2

Table 12: Average part of edges preserved after
merge-operation in percent for Extended-Barabási-
Albert graphs The results of RM, RNM and MM are
independent of p.
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RMSE equal diff_m diff_size diff_all

g1 1025 1025 492 492
g2 1025 485 2645 4905

RM 42 12 14 55
NDM 42 11 14 54
PNM 1709 1711 935 899
MM 1923 1394 3078 4229

Table 22: RMSE of node-degree distribution before
and after merge of Erdős-Rényi graphs

RMSE equal diff_m diff_size diff_all

β = 0.2
g1 1114 1114 540 540
g2 1116 543 2687 5343

RM 39 12 14 54
NDM 38 12 14 54
PNM 465 469 104 105
MM 2180 1116 3215 3555

β = 0.4
g1 894 894 459 459
g2 895 458 2272 4262

RM 38 12 14 54
NDM 39 12 14 54
PNM 414 413 96 96
MM 1749 1028 2724 3082

β = 0.6
g1 792 792 424 424
g2 791 427 2119 3753

RM 39 12 14 53
NDM 38 12 14 55
PNM 381 384 92 92
MM 1553 972 2542 2843

β = 0.8
g1 734 734 411 411
g2 736 408 2004 3503

RM 38 12 14 54
NDM 39 12 14 54
PNM 365 362 89 88
MM 1435 947 2395 2706

Table 23: RMSE of node-degree distribution before
and after merge of Watts-Strogatz graphs
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Divide 10:90 20:80 30:70 40:60 50:50

RD 1.0 / 0.1 0.5 / 0.1 0.3 / 0.1 0.2 / 0.2 0.2 / 0.2
RSD 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100
NDDa 1.0 / 0.1 0.6 / 0.2 0.4 / 0.2 0.3 / 0.2 0.2 / 0.2
NDDb 1.4 / 0.2 0.7 / 0.2 0.5 / 0.2 0.3 / 0.2 0.3 / 0.3
SED 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100

Table 13: Average part of edges preserved after divide-operation in percent of Erdős-Rényi graphs

Divide 10:90 20:80 30:70 40:60 50:50

β = 0.2
RD 1.0 / 0.1 0.5 / 0.1 0.3 / 0.1 0.3 / 0.2 0.2 / 0.2
RSD 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100
NDDa 1.0 / 0.1 0.5 / 0.2 0.4 / 0.2 0.3 / 0.2 0.2 / 0.3
NDDb 1.2 / 0.1 0.6 / 0.1 0.4 / 0.2 0.3 / 0.2 0.2 / 0.2
SED 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100

β = 0.4
RD 1.0 / 0.1 0.5 / 0.1 0.3 / 0.1 0.3 / 0.2 0.2 / 0.2
RSD 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100
NDDa 1.1 / 0.1 0.6 / 0.2 0.4 / 0.2 0.3 / 0.2 0.2 / 0.3
NDDb 1.3 / 0.1 0.7 / 0.2 0.4 / 0.2 0.3 / 0.2 0.2 / 0.3
SED 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100

β = 0.6
RD 1.0 / 0.1 0.5 / 0.1 0.3 / 0.1 0.3 / 0.2 0.2 / 0.2
RSD 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100
NDDa 1.1 / 0.1 0.6 / 0.2 0.4 / 0.2 0.3 / 0.2 0.2 / 0.3
NDDb 1.4 / 0.1 0.7 / 0.2 0.4 / 0.2 0.3 / 0.2 0.3 / 0.3
SED 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100

β = 0.8
RD 1.1 / 0.1 0.5 / 0.1 0.3 / 0.1 0.3 / 0.2 0.2 / 0.2
RSD 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100
NDDa 1.2 / 0.1 0.6 / 0.2 0.4 / 0.2 0.3 / 0.2 0.2 / 0.3
NDDb 1.3 / 0.1 0.7 / 0.2 0.4 / 0.2 0.3 / 0.2 0.3 / 0.3
SED 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100

Table 14: Average part of edges preserved after divide-operation in percent of Watts-Strogatz graphs
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Divide 10:90 20:80 30:70 40:60 50:50

p = 0.2
RD 0.8 / 0.1 0.4 / 0.1 0.3 / 0.1 0.2 / 0.1 0.2 / 0.2
RSD 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100
NDDa 2.9 / 0.2 1.8 / 0.2 1.3 / 0.2 1.0 / 0.2 0.9 / 0.2
NDDb 3.4 / 0.6 2.1 / 0.6 1.5 / 0.7 1.1 / 0.8 0.9 / 1.0
SED 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100

p = 0.4
RD 0.7 / 0.1 0.4 / 0.1 0.3 / 0.1 0.2 / 0.1 0.2 / 0.2
RSD 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100
NDDa 3.0 / 0.2 1.8 / 0.2 1.3 / 0.2 1.1 / 0.2 0.9 / 0.3
NDDb 3.5 / 0.6 2.1 / 0.6 1.5 / 0.7 1.2 / 0.8 0.9 / 1.0
SED 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100

p = 0.6
RD 0.8 / 0.1 0.4 / 0.1 0.3 / 0.1 0.2 / 0.1 0.2 / 0.2
RSD 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100
NDDa 3.0 / 0.1 1.8 / 0.2 1.3 / 0.2 1.1 / 0.2 0.9 / 0.2
NDDb 3.4 / 0.6 2.1 / 0.6 1.5 / 0.7 1.2 / 0.8 0.9 / 1.0
SED 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100

p = 0.8
RD 0.9 / 0.1 0.4 / 0.1 0.3 / 0.1 0.2 / 0.1 0.2 / 0.2
RSD 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100
NDDa 3.0 / 0.1 1.8 / 0.1 1.3 / 0.2 1.1 / 0.2 0.9 / 0.2
NDDb 3.3 / 0.6 2.0 / 0.7 1.5 / 0.7 1.1 / 0.8 0.9 / 1.0
SED 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100

p = 1.0
RD 0.8 / 0.1 0.4 / 0.1 0.3 / 0.1 0.2 / 0.1 0.2 / 0.2
RSD 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100
NDDa 3.0 / 0.1 1.8 / 0.1 1.3 / 0.2 1.1 / 0.2 0.9 / 0.2
NDDb 3.2 / 0.6 1.9 / 0.6 1.5 / 0.7 1.1 / 0.8 0.9 / 1.0
SED 100 / 100 100 / 100 100 / 100 100 / 100 100 / 100

Table 15: Average part of edges preserved after divide-operation in percent of Extended-Barabási-Albert
graphs
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Merge ρequal ρdiff _m ρdiff _size ρdiff _all τequal τdiff _m τdiff _size τdiff _all

RM -0.001 -0.002 0.000 0.000 -0.001 -0.001 0.000 0.000
NDM 0.728 0.844 0.875 0.785 0.612 0.703 0.743 0.655
PNM 0.405 -0.435 0.577 0.872 0.337 -0.222 0.459 0.749
MM 0.977 0.984 0.980 0.991 0.952 0.929 0.958 0.968

Table 16: Rank Correlation Measures for Spearman’s ρ and Kendall’s τ of Erdős-Rényi graphs

Merge ρequal ρdiff _m ρdiff _size ρdiff _all τequal τdiff _m τdiff _size τdiff _all

β = 0.2
RM 0.001 0.000 -0.001 0.000 0.000 0.000 -0.001 0.000
NDM 0.708 0.840 0.864 0.771 0.622 0.713 0.751 0.665
PNM 0.266 -0.620 0.562 0.865 0.218 -0.379 0.464 0.760
MM 1.000 0.953 1.000 0.956 1.000 0.874 1.000 0.924

β = 0.4
RM 0.000 -0.001 -0.001 0.000 0.000 -0.001 -0.001 0.000
NDM 0.724 0.842 0.870 0.779 0.627 0.710 0.750 0.664
PNM 0.311 -0.580 0.570 0.876 0.253 -0.333 0.465 0.765
MM 1.000 0.969 1.000 0.974 1.000 0.900 1.000 0.944

β = 0.6
RM -0.001 0.001 -0.001 0.001 -0.001 0.001 -0.001 0.000
NDM 0.728 0.843 0.872 0.781 0.626 0.708 0.749 0.662
PNM 0.334 -0.556 0.573 0.878 0.271 -0.310 0.465 0.765
MM 1.000 0.975 1.000 0.980 1.000 0.910 1.000 0.951

β = 0.8
RM -0.002 -0.001 0.000 -0.001 -0.001 -0.001 0.000 0.000
NDM 0.73 0.843 0.873 0.782 0.625 0.707 0.748 0.661
PNM 0.345 -0.543 0.575 0.879 0.280 -0.298 0.465 0.765
MM 1.000 0.977 1.000 0.982 1.000 0.914 1.000 0.955

Table 17: Rank Correlation Measures for Spearman’s ρ and Kendall’s τ of Watts-Strogatz graphs
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Merge ρequal ρdiff _m ρdiff _size ρdiff _all τequal τdiff _m τdiff _size τdiff _all

p = 0.2
RM 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
NDM 0.656 0.842 0.859 0.778 0.566 0.710 0.730 0.661
PNM 0.319 -0.389 0.576 0.831 0.281 -0.225 0.458 0.699
MM 1.000 0.978 1.000 0.984 1.000 0.925 1.000 0.964

p = 0.4
RM -0.003 -0.001 0.000 0.000 -0.003 0.000 0.000 0.000
NDM 0.655 0.841 0.859 0.778 0.566 0.710 0.730 0.661
PNM 0.317 -0.391 0.576 0.830 0.280 -0.228 0.458 0.699
MM 1.000 0.977 1.000 0.984 1.000 0.924 1.000 0.963

p = 0.6
RM -0.001 0.001 0.000 0.001 0.000 0.000 0.000 0.000
NDM 0.655 0.842 0.859 0.778 0.566 0.710 0.730 0.661
PNM 0.315 -0.396 0.576 0.831 0.279 -0.231 0.458 0.700
MM 1.000 0.977 1.000 0.983 1.000 0.925 1.000 0.963

p = 0.8
RM -0.001 0.000 0.001 -0.001 -0.001 0.000 0.000 -0.001
NDM 0.655 0.842 0.859 0.778 0.567 0.710 0.729 0.661
PNM 0.316 -0.403 0.576 0.833 0.279 -0.234 0.457 0.703
MM 1.000 0.978 1.000 0.984 1.000 0.926 1.000 0.963

p = 1.0
RM 0.000 -0.001 -0.001 -0.001 0.000 -0.001 -0.001 -0.001
NDM 0.655 0.842 0.859 0.778 0.566 0.709 0.728 0.661
PNM 0.316 -0.406 0.577 0.833 0.279 -0.236 0.457 0.704
MM 1.000 0.979 1.000 0.984 1.000 0.927 1.000 0.964

Table 18: Rank Correlation Measures for Spearman’s ρ and Kendall’s τ of Extended-Barabási-Albert graphs
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Divide ρ10:90 ρ20:80 ρ30:70 ρ40:60 ρ50:50 τ10:90 τ20:80 τ30:70 τ40:60 τ50:50

RD 0.001 -0.0 -0.001 0.001 -0.002 0.0 -0.0 -0.001 0.001 -0.002
RSD 0.768 0.601 0.563 0.634 0.688 0.694 0.508 0.446 0.5 0.551
NDDa 0.659 0.543 0.46 0.416 0.407 0.55 0.45 0.379 0.341 0.332
NDDb 0.804 0.803 0.803 0.804 0.803 0.675 0.674 0.674 0.675 0.674
SED 0.819 0.645 0.557 0.48 0.452 0.718 0.52 0.432 0.362 0.337

Table 19: Rank Correlation Measures for Spearman’s ρ and Kendall’s τ of Erdős-Rényi graphs

Divide ρ10:90 ρ20:80 ρ30:70 ρ40:60 ρ50:50 τ10:90 τ20:80 τ30:70 τ40:60 τ50:50

β = 0.2
RD -0.001 0.0 -0.002 0.001 -0.0 -0.0 0.0 -0.001 0.001 -0.0
RSD 0.623 0.409 0.31 0.332 0.37 0.541 0.336 0.247 0.264 0.297
NDDa 0.645 0.559 0.44 0.432 0.454 0.55 0.466 0.361 0.349 0.367
NDDb 0.8 0.8 0.801 0.8 0.8 0.695 0.695 0.696 0.696 0.695
SED 0.642 0.456 0.353 0.299 0.276 0.554 0.37 0.279 0.233 0.215

β = 0.4
RD -0.0 -0.001 0.002 0.0 0.001 -0.0 -0.001 0.001 0.0 0.001
RSD 0.689 0.481 0.391 0.424 0.471 0.603 0.396 0.308 0.332 0.374
NDDa 0.663 0.537 0.48 0.415 0.429 0.561 0.448 0.394 0.337 0.348
NDDb 0.811 0.811 0.811 0.81 0.809 0.696 0.696 0.696 0.696 0.695
SED 0.698 0.519 0.409 0.343 0.31 0.592 0.415 0.317 0.262 0.235

β = 0.6
RD 0.0 -0.001 -0.001 -0.0 0.0 0.0 -0.001 -0.001 -0.0 0.0
RSD 0.713 0.513 0.429 0.471 0.522 0.629 0.424 0.338 0.369 0.414
NDDa 0.663 0.547 0.482 0.413 0.423 0.561 0.457 0.396 0.337 0.343
NDDb 0.813 0.813 0.813 0.813 0.813 0.695 0.695 0.695 0.694 0.695
SED 0.726 0.55 0.431 0.354 0.318 0.615 0.438 0.331 0.268 0.238

β = 0.8
RD 0.0 0.0 0.0 -0.0 0.0 0.0 0.0 0.0 -0.0 0.0
RSD 0.723 0.527 0.449 0.497 0.548 0.64 0.437 0.354 0.389 0.434
NDDa 0.666 0.553 0.482 0.414 0.42 0.563 0.462 0.396 0.339 0.342
NDDb 0.814 0.814 0.814 0.814 0.814 0.694 0.694 0.694 0.694 0.694
SED 0.74 0.565 0.441 0.357 0.322 0.627 0.449 0.338 0.269 0.24

Table 20: Rank Correlation Measures for Spearman’s ρ and Kendall’s τ of Watts-Strogatz graphs
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Divide ρ10:90 ρ20:80 ρ30:70 ρ40:60 ρ50:50 τ10:90 τ20:80 τ30:70 τ40:60 τ50:50

p = 0.2
RD -0.0 -0.0 -0.0 0.002 0.0 -0.0 -0.0 -0.0 0.001 0.0
RSD 0.77 0.646 0.637 0.693 0.728 0.709 0.557 0.525 0.579 0.619
NDDa 0.635 0.52 0.437 0.382 0.366 0.537 0.437 0.364 0.314 0.299
NDDb 0.781 0.781 0.782 0.782 0.781 0.663 0.663 0.664 0.663 0.663
SED 0.801 0.632 0.529 0.513 0.502 0.704 0.518 0.419 0.407 0.403

p = 0.4
RD -0.001 -0.002 0.001 0.0 0.002 -0.001 -0.001 0.001 0.0 0.001
RSD 0.77 0.642 0.632 0.687 0.723 0.708 0.554 0.522 0.574 0.615
NDDa 0.634 0.519 0.436 0.378 0.362 0.537 0.436 0.363 0.312 0.296
NDDb 0.78 0.782 0.782 0.78 0.782 0.663 0.664 0.664 0.663 0.664
SED 0.805 0.646 0.549 0.528 0.521 0.709 0.532 0.438 0.421 0.42

p = 0.6
RD 0.001 0.001 -0.001 0.002 0.0 0.001 0.001 -0.001 0.001 0.0
RSD 0.771 0.644 0.632 0.687 0.723 0.709 0.555 0.522 0.574 0.615
NDDa 0.635 0.519 0.436 0.379 0.364 0.537 0.436 0.363 0.312 0.297
NDDb 0.781 0.781 0.781 0.781 0.781 0.664 0.664 0.664 0.663 0.664
SED 0.816 0.677 0.585 0.549 0.552 0.722 0.561 0.47 0.439 0.446

p = 0.8
RD 0.0 0.002 -0.001 0.001 0.0 0.0 0.002 -0.001 0.001 0.0
RSD 0.772 0.646 0.634 0.692 0.726 0.71 0.557 0.523 0.578 0.616
NDDa 0.635 0.52 0.439 0.383 0.37 0.537 0.437 0.365 0.316 0.302
NDDb 0.781 0.782 0.781 0.782 0.781 0.663 0.663 0.663 0.664 0.663
SED 0.822 0.714 0.656 0.605 0.603 0.73 0.598 0.535 0.488 0.49

p = 1.0
RD -0.001 -0.001 -0.001 0.001 -0.0 -0.001 -0.001 -0.001 0.001 -0.0
RSD 0.775 0.651 0.643 0.695 0.732 0.712 0.561 0.53 0.579 0.621
NDDa 0.636 0.521 0.44 0.387 0.372 0.538 0.437 0.365 0.318 0.304
NDDb 0.782 0.781 0.781 0.781 0.782 0.663 0.662 0.662 0.662 0.664
SED 0.823 0.783 0.742 0.73 0.729 0.733 0.675 0.625 0.613 0.615

Table 21: Rank Correlation Measures for Spearman’s ρ and Kendall’s τ of Extended-Barabási-Albert graphs
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RMSE (g1/g2) 10:90 20:80 30:70 40:60 50:50

g 1768 1768 1768 1768 1768

RD 4 / 18 7 / 17 9 / 16 10 / 13 12 / 12
RSD 171 / 889 405 / 835 661 / 790 665 / 781 720 / 718
NDDa 5 / 18 6 / 17 9 / 15 10 / 14 12 / 12
NDDb 4 / 18 6 / 17 8 / 15 10 / 14 12 / 12
SED 62 / 746 117 / 582 178 / 520 225 / 435 286 / 368

Table 26: RMSE of node-degree distribution before and after divide or Erdős-Rényi graphs
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RMSE (g1/g2) 10:90 20:80 30:70 40:60 50:50

β = 0.2
g 1534 1534 1534 1534 1534

RD 4 / 15 6 / 14 7 / 13 9 / 12 10 / 10
RSD 180 / 1459 447 / 1276 774 / 1184 869 / 1076 964 / 958
NDDa 4 / 15 6 / 14 7 / 13 9 / 12 10 / 10
NDDb 4 / 15 6 / 14 7 / 13 9 / 11 10 / 10
SED 73 / 1224 142 / 943 221 / 725 300 / 573 381 / 429
381

β = 0.4
g 1291 1291 1291 1291 1291

RD 4 / 15 6 / 14 7 / 13 9 / 12 10 / 10
RSD 175 / 1269 440 / 1156 743 / 1079 791 / 971 899 / 904
NDDa 4 / 15 6 / 14 7 / 13 9 / 11 10 / 10
NDDb 4 / 15 6 / 14 7 / 13 9 / 11 10 / 10
SED 66 / 996 130 / 778 192 / 589 250 / 458 325 / 376

β = 0.6
g 1169 1169 1169 1169 1169

RD 4 / 15 6 / 14 7 / 13 9 / 12 10 / 10
RSD 174 / 1169 432 / 1073 729 / 1015 789 / 956 865 / 867
NDDa 4 / 15 6 / 14 7 / 13 9 / 11 10 / 10
NDDb 4 / 15 6 / 14 7 / 13 9 / 11 10 / 10
SED 68 / 897 129 / 672 184 / 530 250 / 434 307 / 362

β = 0.8
g 1087 1087 1087 1087 1087

RD 4 / 15 6 / 14 7 / 13 8 / 12 10 / 10
RSD 171 / 1114 423 / 1029 716 / 983 755 / 923 841 / 846
NDDa 4 / 15 6 / 14 7 / 13 9 / 11 10 / 10
NDDb 4 / 15 6 / 14 7 / 13 9 / 12 10 / 10
SED 66 / 836 120 / 650 178 / 517 238 / 420 308 / 344

Table 27: RMSE of node-degree distribution before and after divide or Watts-Strogatz graphs
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RMSE (g1/g2) 10:90 20:80 30:70 40:60 50:50

p = 0.2
g 138 138 138 138 138

RD 5 / 22 8 / 21 10 / 18 13 / 17 15 / 15
RSD 89 / 121 130 / 116 189 / 128 161 / 147 136 / 137
NDDa 5 / 23 8 / 20 10 / 19 13 / 17 14 / 15
NDDb 5 / 23 8 / 21 10 / 19 13 / 17 15 / 15
SED 16 / 130 25 / 199 26 / 215 32 / 256 26 / 283

p = 0.4
g 147 147 147 147 147

RD 5 / 22 8 / 21 10 / 19 12 / 16 15 / 14
RSD 83 / 102 124 / 113 176 / 114 151 / 116 121 / 121
NDDa 5 / 22 8 / 21 10 / 19 13 / 17 15 / 15
NDDb 5 / 22 8 / 20 10 / 19 12 / 17 15 / 15
SED 16 / 119 18 / 183 19 / 226 25 / 253 29 / 244

Table 28: RMSE of node-degree distribution before and after divide or Extended-Barabási-Albert graphs
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RMSE (g1/g2) 10:90 20:80 30:70 40:60 50:50

p = 0.6
g 128 128 128 128 128

RD 5 / 23 8 / 20 10 / 19 13 / 17 15 / 15
RSD 83 / 93 115 / 117 163 / 102 119 / 120 110 / 114
NDDa 5 / 23 8 / 21 10 / 19 13 / 17 15 / 15
NDDb 5 / 23 8 / 21 10 / 19 13 / 17 15 / 14
SED 12 / 132 13 / 168 15 / 206 18 / 220 32 / 225

p = 0.8
g 122 122 122 122 122

RD 5 / 22 8 / 21 10 / 19 12 / 17 15 / 15
RSD 84 / 87 115 / 94 162 / 96 128 / 110 102 / 109
NDDa 5 / 23 8 / 21 10 / 18 13 / 17 15 / 14
NDDb 5 / 22 8 / 21 10 / 19 13 / 16 15 / 15
SED 11 / 138 13 / 178 21 / 192 28 / 210 36 / 194

p = 1.0
g 157 157 157 157 157

RD 5 / 22 8 / 20 10 / 19 13 / 17 14 / 14
RSD 86 / 84 131 / 88 166 / 96 158 / 100 107 / 109
NDDa 5 / 22 8 / 21 10 / 19 12 / 17 15 / 15
NDDb 5 / 22 8 / 21 10 / 19 13 / 16 15 / 15
SED 9 / 170 19 / 167 28 / 191 40 / 189 54 / 168

Table 29: RMSE of node-degree distribution before and after divide or Extended-Barabási-Albert graphs
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